

Tim Brunner

IBM SRDC

Progress of Litho Optics

Three Ways to Improve Resolution

Reduce 1

 $W_{min} = k_1 \lambda / NA$

Reduce k₁

Increase NA

Significant Litho Wavelengths

Source	1	D1/1	Wmin	DOF
G-line	436nm		249nm	850nm
I-line	365	19%	209	730
KrF	248	47	142	500
ArF	193	28	110	400
F ₂ ?	157	23	90	320
Ar ₂ ??	126	25	72	257

 W_{min} assumes $k_1 = 0.4$ and NA=0.7

Rayleigh DO = λ/NA^2

Optical Lithography at 1 < 193nm

- MIT LL research to explore 157nm
 - Severe optical material issues
 - Transmissive photomask (CaF₂) has severe thermal stability problems
 - Fused silica
 CaF₂ substrate
 0.5ppm/°C
 19ppm/°C
 - Resist process, dry N₂ atmosphere, F₂ laser, etc.
 - Unlikely to meet SIA roadmap for 100nm in 2003
- 126nm Ar₂ lamp source??
 - Currently 100X too weak
 - No good lens material forces all-reflective optics
 - Prospects remote

Conventional vs. Advanced Imaging

- Conventional imaging, OK for k₁>0.65
 - COG mask same as desired pattern
 - Stepper optics are fixed at standard NA and s
 - Simple to understand and implement!
- Advanced imaging, needed for k₁<0.65
 - Optical Proximity Correction (OPC) predistort mask pattern to account for process
 - Use Phase Shift Mask (PSM)? What type of PSM?
 - Vary optics settings? NA and illumination.
 - Off Axis Illumination (OAI)?
 - Much more complicated!
 - Simulations necessary for finding optimal printing

Major "Post-optical" Candidates

- EUV Extreme UltraViolet 1 = 13nm projector
 - All-reflective optics and mask using multi-layers
- Ion beam projection using 100kV ions
 - Stencil mask
- SCALPEL 100kV electron projection
 - Membrane mask with patterned scatterer
- X-ray proximity printing with narrow mask/wafer gap
 - 1X membrane masks with high-Z absorber

Price Trends

Source: ICE

Courtesy: M. Cowan, IBM